BayesPPD: Bayesian Power Prior Design
Bayesian power/type I error calculation and model fitting using 
  the power prior and the normalized power prior for generalized linear models.
  Detailed examples of applying the package are available at <doi:10.32614/RJ-2023-016>.
  Models for time-to-event outcomes are implemented in the R package 'BayesPPDSurv'.
  The Bayesian clinical trial design methodology is described in Chen et al. (2011) 
  <doi:10.1111/j.1541-0420.2011.01561.x>, and Psioda and Ibrahim (2019) 
  <doi:10.1093/biostatistics/kxy009>. The normalized power prior is described in Duan et al. (2006) 
  <doi:10.1002/env.752> and Ibrahim et al. (2015) <doi:10.1002/sim.6728>. 
| Version: | 1.1.3 | 
| Depends: | R (≥ 3.5.0) | 
| Imports: | Rcpp | 
| LinkingTo: | Rcpp, RcppArmadillo, RcppEigen, RcppNumerical | 
| Suggests: | rmarkdown, knitr, testthat (≥ 3.0.0), ggplot2, kableExtra | 
| Published: | 2025-01-13 | 
| DOI: | 10.32614/CRAN.package.BayesPPD | 
| Author: | Yueqi Shen [aut, cre],
  Matthew A. Psioda [aut],
  Joseph G. Ibrahim [aut] | 
| Maintainer: | Yueqi Shen  <angieshen6 at gmail.com> | 
| License: | GPL (≥ 3) | 
| NeedsCompilation: | yes | 
| Citation: | BayesPPD citation info | 
| Materials: | NEWS | 
| CRAN checks: | BayesPPD results | 
Documentation:
Downloads:
Reverse dependencies:
Linking:
Please use the canonical form
https://CRAN.R-project.org/package=BayesPPD
to link to this page.