cjbart: Heterogeneous Effects Analysis of Conjoint Experiments
A tool for analyzing conjoint experiments using Bayesian Additive Regression Trees ('BART'), a machine learning method developed by Chipman, George and McCulloch (2010) <doi:10.1214/09-AOAS285>. This tool focuses specifically on estimating, identifying, and visualizing the heterogeneity within marginal component effects, at the observation- and individual-level. It uses a variable importance measure ('VIMP') with delete-d jackknife variance estimation, following Ishwaran and Lu (2019) <doi:10.1002/sim.7803>, to obtain bias-corrected estimates of which variables drive heterogeneity in the predicted individual-level effects.
| Version: | 0.3.2 | 
| Depends: | R (≥ 3.6.0), BART | 
| Imports: | stats, rlang, tidyr, ggplot2, randomForestSRC (≥ 3.2.2), Rdpack | 
| Suggests: | testthat (≥ 3.0.0), knitr, parallel, rmarkdown | 
| Published: | 2023-09-06 | 
| DOI: | 10.32614/CRAN.package.cjbart | 
| Author: | Thomas Robinson  [aut, cre, cph],
  Raymond Duch  [aut, cph] | 
| Maintainer: | Thomas Robinson  <ts.robinson1994 at gmail.com> | 
| BugReports: | https://github.com/tsrobinson/cjbart/issues | 
| License: | Apache License (≥ 2.0) | 
| URL: | https://github.com/tsrobinson/cjbart | 
| NeedsCompilation: | no | 
| Materials: | README, NEWS | 
| CRAN checks: | cjbart results | 
Documentation:
Downloads:
Linking:
Please use the canonical form
https://CRAN.R-project.org/package=cjbart
to link to this page.