oddnet: Anomaly Detection in Temporal Networks
Anomaly detection in dynamic, temporal networks. The package 
    'oddnet' uses a feature-based method to identify anomalies. First, it computes 
    many features for each network. Then it models the features using time series 
    methods. Using time series residuals it detects anomalies. This way, the 
    temporal dependencies are accounted for when identifying anomalies 
    (Kandanaarachchi, Hyndman 2022) <doi:10.48550/arXiv.2210.07407>.
| Version: | 0.1.1 | 
| Imports: | dplyr, fable, fabletools, igraph, lookout, pcaPP, rlang, tibble, tidyr, tsibble, utils | 
| Suggests: | DDoutlier, feasts, knitr, rmarkdown, rTensor, urca | 
| Published: | 2024-02-11 | 
| DOI: | 10.32614/CRAN.package.oddnet | 
| Author: | Sevvandi Kandanaarachchi  [aut, cre],
  Rob Hyndman  [aut] | 
| Maintainer: | Sevvandi Kandanaarachchi  <sevvandik at gmail.com> | 
| License: | GPL (≥ 3) | 
| URL: | https://sevvandi.github.io/oddnet/ | 
| NeedsCompilation: | no | 
| Materials: | README | 
| In views: | AnomalyDetection | 
| CRAN checks: | oddnet results | 
Documentation:
Downloads:
Linking:
Please use the canonical form
https://CRAN.R-project.org/package=oddnet
to link to this page.