rSDR: Robust Sufficient Dimension Reduction

A novel sufficient-dimension reduction method is robust against outliers using alpha-distance covariance and manifold-learning in dimensionality reduction problems. Please refer Hsin-Hsiung Huang, Feng Yu & Teng Zhang (2024) <doi:10.1080/10485252.2024.2313137> for the details.

Version: 1.0.2.1
Imports: expm, ManifoldOptim, methods, Rcpp, rstiefel, scatterplot3d, future, future.apply, ggplot2, ggsci
Suggests: knitr, rmarkdown, Matrix, RcppNumerical, fdm2id
Published: 2025-10-28
DOI: 10.32614/CRAN.package.rSDR (may not be active yet)
Author: Sheau-Chiann Chen ORCID iD [aut, cre], Shilin Zhao [aut], Hsin-Hsiung Bill Huang ORCID iD [aut]
Maintainer: Sheau-Chiann Chen <sheau-chiann.chen.1 at vumc.org>
License: GPL (≥ 3)
NeedsCompilation: no
CRAN checks: rSDR results

Documentation:

Reference manual: rSDR.html , rSDR.pdf
Vignettes: rSDR_vignette (source, R code)

Downloads:

Package source: rSDR_1.0.2.1.tar.gz
Windows binaries: r-devel: not available, r-release: not available, r-oldrel: not available
macOS binaries: r-release (arm64): not available, r-oldrel (arm64): not available, r-release (x86_64): rSDR_1.0.2.1.tgz, r-oldrel (x86_64): not available

Linking:

Please use the canonical form https://CRAN.R-project.org/package=rSDR to link to this page.